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The semiclassical expression of level curvature for quantized chaotic systems with periodic lattice symmetry
is derived. From this expression, the transport property of such systems is investigated via the Thouless
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I. INTRODUCTION

In this paper, motivated by recent extensive studies on
quantum chaology, mesoscopic systems, and foundation of
statistical mechanics, we discuss the transport phenomena in
quantized chaotic systems. In order to characterize the trans-
port property of mesoscopic systems, one uses several for-
mulas, i.e., Kubo formula@1,2#, Thouless formula@3,4#, Lan-
dauer formula@5,6#, and Byers-Yang formula@7#. Among
them, the Kubo formula is derived from the microscopic dy-
namics with the assumption of ergodicity and the adiabatic
switching of external field. In this sense, the Kubo formula is
the most fundamental and reliable among the above formu-
las, because the others are hypothetical and only for the spe-
cific systems.

Recent studies on mesoscopic systems examine the para-
metric dependence of the energy levels from several view
points, i.e., usual and field theoretical random matrix theory
@8,9# and semiclassical theory@10,11#. Their interest is fo-
cused at the two-point correlation of energy levels, namely,
^d(E,l)d(E1DE,l1dl)&, whereE is energy,l is the sys-
tem parameter, andd(E,l) is the density of states. If the
parametric dependence is due to symmetry of systems~e.g.,
periodicity!, we can consider the transport property by using
the Thouless formula or Byers-Yang formula. In such a
study, the Thouless formula particularly plays an essential
role. The sensitivity of the energy level to the change of the
boundary condition provides us with the conductance of a
given system via the Thouless formula:

g5
1

D K U]2En

]f2 U
f50

L , ~1!

wheref is the Bloch parameter and the bracket means the
average over the whole energy levels. The first derivative
]E/]f and second derivative]2E/]f2 are called the level
velocity and level curvature, respectively. However, the deri-

vation of the Thouless formula is hypothetical as shown later
in Sec. II. It is natural to ask about the theoretical foundation
of the Thouless formula. Therefore, the main aim of this
paper is to answer this question.

To this end, we employ the semiclassical theory. The ad-
vantage of the semiclassical theory is as follows.~a! We can
understand the quantum phenomena in terms of the underly-
ing classical dynamics. We fully use the classical-quantum
correspondence in some sense.~b! Recent development of
‘‘chaos theory’’ in classical mechanics provides us with a
large amount of useful information.~c! If the semiclassical
theory is employed in an appropriate way, we obtain high
accuracy compared with a quantum exact result.

Here we briefly comment on point~b!. To calculate the
transport coefficient from the microscopic levels is still the
main subject of nonequilibrium statistical mechanics. The
recent progress of ‘‘chaos theory’’ and the related numerical
simulation of molecular dynamics show that for hard chaotic
systems, the transport coefficient can be explicitly expressed
in terms of the dynamical characteristic quantities such as
Lyapunov exponents, escape rates, etc. There are three fun-
damental contributions. First is the escape rate formalism by
Gaspardet al. @12,13#. Second is the cycle expansion by Cvi-
tanović@14,15#. As is shown later, this formalism is particu-
larly useful for our semiclassical analysis. Third is the math-
ematical rigorous proof by Chernovet al. @16#. From these
contributions, we now know that ‘‘chaos’’ indeed plays an
important role for the foundation of nonequilibrium statisti-
cal mechanics. At the same time, the validity of the classical
Kubo formula was reconsidered from the aspect of chaos
theoretically@16# and numerically since van Kampen’s ob-
jection @17#.

Turning our attention from a classical object to a quantum
object in the context of transport phenomena, what changes?
Recently the semiclassical Kubo formula was derived and
applied to the magnetoconductivity and de Haas–van Alphen
effect by several authors@18,19#. In their work, the Kubo
formula is expressed in terms of the characteristics of the
periodic orbits for quantized chaotic systems. As well as the
Kubo formula, another formula for the transport coefficient
as mentioned before can be semiclassically analyzed. The
derived semiclassical expression directly enables us to eluci-
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date the process of the quantum interference in transport phe-
nomena. In order to derive the semiclassical expression for
the Thouless formula Eq.~1!, we use a formal analogy of the
zeta function formalism~i.e., cycle expansion!. As we will
show later in Sec. III, for quantized chaotic systems with the
periodic boundary condition, it turns out that the semiclassi-
cal expression of level curvature~i.e., the inverse of effective
mass! is a quantum analog of the classical diffusion coeffi-
cient derived in@14,15#.

This paper is organized as follows. In Sec. II, we intro-
duce the Thouless formula along the original Thouless argu-
ment. In Sec. III, we derive the semiclassical expression for
the level curvature~i.e., the inverse of the effective mass! for
both autonomous Hamiltonian systems and kicked Hamil-
tonian systems. In Sec. IV, we compare the Thouless for-
mula with the Kubo formula in a semiclassical way. In Sec.
V, the numerical calculation is reported. For the quantized
kicked rotator, Akkermans’s relation and the semiclassical
level curvature derived here are tested. In Sec. VI, we sum-
marize the results.

II. THOULESS FORMULA

In this section, we derive the Thouless formula along the
original Thouless’s argument and reexamine it under the
consideration of the application to quantized chaotic sys-
tems. Consider thed-dimensional cubic fraction of a random
alloy whose size isL. This fraction is described by the
Schrödinger equation:

Ĥ5
p̂2

2m
1V~ r̂ !, ~2!

Ĥca~r !5Eaca~r !. ~3!

To measure the tendency of the localization for a given
eigenstate, we introduce the change of the boundary condi-
tion:

ca~r1Lex!5exp~ if!ca~r !. ~4!

Here we only consider thex direction. The generalization to
all directions is easy. This boundary condition is equivalent
to solving the following Hamiltonian:

Ĥ85
1

2m S p̂1
\f

L
exD 21V~ r̂ !

5Ĥ1
\f

mL
p̂x1

\2f2

2mL2
. ~5!

For localized state, this change of the boundary condition
does not affect the eigenwave function because the exponen-
tially damped tail of it near the boundary of the alloy cannot
transfer this perturbation to the other side. This would corre-
spond to no conduction of electrons. However, for the ex-
tended eigenstate, this perturbation by the boundary condi-
tion does affect its wave function. The perturbation can be
transformed to the other side without large loss. Thus, the
extended state contributes to the conduction of electrons.
This effect would appear in the change of the corresponding
eigenenergy. Let us introduce the following quantity:

DEa[
1

2 UF ]2Ea~f!

]f2 G
f50

U5 \2

L2 F 1

2m
1

1

m2 (
bÞa

z^au p̂xub& z2

Ea2Eb
G .
~6!

Now we assumed that there is no degeneracy. This is
consistent with the later analysis for quantized chaotic sys-
tems.

For the localized state, it can be shown thatDEa50 as
L→` by using i\(dx̂/dt)5@ x̂,Ĥ#. However, for the ex-
tended state, since the eigenwave function is extended in the
whole range, the evaluation for the localized state cannot
work as L→1`, namely, we cannot use the Heisenberg
equation of motion above. So we choose another route to
evaluateDEa . The order of the energy difference is given as

Ea2Eb;OS 1

U dNdEU D . ~7!

This replacement implies that the energy levels are uncorre-
lated.DEa can be approximated by

DEa;
\2

L2
1

m2p
2
dN

dE
, ~8!

wherep̄ is the average of̂aup̂ub&. Here we assume that the
p2 in Eq. ~8! is same as that which appears in the Kubo
formula. This implies that the value of the matrix elements is
well-approximated by a single average value. In other words,
the matrix element is statistically well-distributed. From the
Kubo conductivity and the above formula, we obtain

s5
pe2\

Ld K (
a,b

z^au p̂xub& z2d~E2Ea!d~E2Eb!L
;

e2h

2m2Ld
p2S dNdED 2

5
e2h

2Ld22 S dNdED ^DEa& ~9!

~here the bracket in the first line is an appropriate average
over energy levels!. Since the conductivityGd for a
d-dimensional system may obey the scaling law,
Gd5sLd22, then

gd5
Gd

~e2/h!
;
1

D
^DEa&5

1

D K U]2Ea

]f2 U
f50

L , ~10!

whereD[1/(dN/dE) is the mean level spacing. Note that to
let ‘‘; ’’ become ‘‘5,’’ we have to know the prefactor on
the right-hand side~rhs! of Eq. ~10!.

We would like to make three points.~i! The derivation of
the Thouless formula is based on the time-independent
Schrödinger equation. On the other hand, for the Kubo for-
mula, it is based on the time-dependent Schro¨dinger equation
and the adiabatic process is assumed@20,1,2#. ~ii ! The Thou-
less conductance is the average conductance. Then, the
Thouless conductance may be proportional to the usual Kubo
conductivity, only if all assumptions above, which assure the
averaging, are satisfied.~iii ! For classically chaotic systems,
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the average over energy levels should be^u•••u& in the me-
tallic regime rather than̂ u•••u2&1/2 in the other definition
@21#. ~See Table I.! It is shown, by random matrix theory,
that the tail of the curvature distribution obeys the power law
@22#:

P~k!;uku2~b12!H b51, GOE~COE!

b52, GUE~CUE!

b54, GSE~CSE!,
~11!

wherek[]2E(l)/]l2 @k[]2v(l)/]l2# is the level curva-
ture, andl is the system parameter. These expressions are
for the type of HamiltonianĤ5Ĥ01lV̂, Ĥcn5En(l)cn

@Ĥ5 Ĥ0 1 lV̂( j52`
` d(t 2 j ), Û5 e2( i /\)Ĥ0e2( i /\) lV̂,

Ûcn5eivn(l)cn#. If we take^u•••u2&1/2, the mean value of it
will become divergent. Therefore, we should take the abso-
lute value of the curvature in the bracket.

III. SEMICLASSICAL LEVEL CURVATURES

In the preceding section, we have introduced the Thouless
formula in connection with the parameter dependence of en-
ergy levels to the Bloch parameter. In this section, using the
semiclassical theory, we show that the level curvature is a
quantum analog of classical diffusion coefficient. Then, it
turns that the Thouless formula uses this analogy for mea-
suring the transport property. To show this analogy, first we
shall look at the result for the classical diffusion coefficient
in hard chaotic systems with periodic lattice symmetry. Next,
we start the derivation of the semiclassical expression for the
Thouless formula for both the autonomous Hamiltonian sys-
tem and the kicked Hamiltonian system.

A. Classical transport phenomena

Recently, in the framework of classical mechanics, the
connection between transport coefficient and dynamical
chaos was discovered in the escape rate formalism@12,13#,
the cycle expansion@14,15#, and the Gaussian thermostat
model @16#. In particular, the cycle expansion will be used
for the semiclassical evaluation of level curvature in the next
subsection. It is based on the information of periodic orbits
of the system with discrete geometrical symmetry~periodic
lattice symmetry!. Here we briefly show the derivation for
later use. Readers should to consult Refs.@14,15#.

To evaluate the diffusion coefficient, here we define the
generating functionQ(b) formally:

Q~b![ lim
t→`

1

t
ln^eb•~ x̂t2x!&, ~12!

where^ & denotes the ensemble average with respect to the
initial pointsx in certain initial cell,x̂t[f t(x), andf t is the
time-evolution operator. Here the caret represents the posi-
tion in the whole space. We denote the positions in the initial
cell by x,y, . . . without the caret. The diffusion coefficient
D is written as

D5
1

2d(
j51

d
]2

]b j
2Q~b!U

b50

5 lim
t→`

1

2dt
^~ x̂t2x!2&. ~13!

To express the diffusion coefficient in terms of the dynami-
cal characteristic quantities, here we define the weighted
Perron-Frobenius operator:

Lt~ ŷ,x!5eb•~ ŷ2x!d@ ŷ2f t~x!#. ~14!

The associated Fredholm determinant for this operator is

Z~b,s![det~12zL!, ~15!

where z5es. By using the usual technique~see @23#! and
reducing the symmetry, we rewriteZ(b,s) in terms of the
information of periodic orbits. Now the periodic orbits are
described in the fundamental cell with the winding numbers
which determine how many cells they pass through. The re-
sulting expression is

Z~b,s!5)
p
expF2(

r51

`
1

r

e~b•wp2stp!r

udet~M p
r 21!uG , ~16!

wherep represents the prime periodic orbits,wp is the wind-
ing vector ofp ~see Fig. 1!, tp is the period ofp, r is the
repetition of p, andM p is the monodromy matrix forp.

FIG. 1. The lattice symmetry and the winding vector for a bal-
listic periodic orbit~two-dimensional Sinai billiard!.

TABLE I. The situation for the derivation of the Thouless formula and the Kubo formula.

Thouless formula ↔ Time-independent Hamiltonian
Equilibrium property

Kubo formula ↔ Time-dependent Hamiltonian~adiabatic process!
Nonequilibrium property
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Z(b,s) can be further reduced to the infinite product of the
associated Ruelle zeta functions. To see the leading zero of
Z(b,s) which corresponds to the equilibrium state, we only
need the corresponding Ruelle zeta function among them:

1

z~b,s!
5)

p
S 12

eb•wp2stp

uLpu
D , ~17!

whereLp5)elp,e , the product of the expanding eigenval-
ues. Here we must note that the generating functionQ(b) is
a solution ofZ(b;Q(b))50 @or 1/z„b,Q(b)…50#. This is
easily confirmed by the large deviation property@15,24,25#.
Finally we expand the Euler product and differentiate it with
respect tob i two times. Then we get

]2

]b i
2Q~b!5

(
k

Swp11p21•••1pk ,i
2

]Q

]b i
tp11p21•••1pkD 2tp11p21•••1pk

(
k

tp11p21•••1pk
tp11p21•••1pk

. ~18!

Here the sum overk is taken over all combinations of the
prime periodic orbits. If the system possesses the symmetry
so that

]

]b i
Q~b!U

b50

50, ~19!

then the diffusion coefficient is given as

D5
1

2d

3

(
k

~21!k~wp1
1wp2

1•••1wpk
!2/uLp1

Lp2
•••Lpk

u

(
k

~21!k~tp11tp21•••1tpk!/uLp1
Lp2

•••Lpk
u
.

~20!

B. Level curvature in terms of periodic orbits:
Autonomous Hamiltonian systems

Let us start the derivation of the semiclassical expression
for the Thouless formula. First, we have to rewrite the usual
Gutzwiller trace formula into that for the periodic lattice sys-
tem with the Bloch parameter. Next, we shall use the asso-
ciated Gutzwiller-Voros zeta function~the associated
Selberg-type zeta function!. In that time, the formalism for
the classical diffusion coefficient in the preceding subsection
will be helpful for us.

1. Gutzwiller trace formula for the system
with the periodic boundary condition

(autonomous system)

Let us consider thed-dimensional systems with the peri-
odic potential:V(q1niai)5V(q), whereai ( i51,2, . . . ,d)
is the primitive lattice vector along thei th direction and
niPZ. In general, the associated quantum system has the
Bloch parameterf[(f1 ,f2 , . . . ,fd), namely, c(q1ai)
5eif ic(q). The eigenenergies for the system depend on the

Bloch parameterf. If the fundamental cell is the
d-dimensional hypercubic, the corresponding Hamiltonian is
given as

Ĥ~ p̂,q̂!5

S p̂1
\f

L D 2
2m

1V~ q̂!, ~21!

whereL is the size of the fundamental cell. This periodic
condition for the potential is interpreted in the condition for
the wave function:c(q1Nai)5c(q). For simplicity, we
consider the simplest case, i.e., periodic cubic lattices in
three-dimensional space. With this condition for the three-
dimensional case, the system has the symmetry group
CN^CN^CN . N

3 irreducible representations of this symme-
try are labeled by the reciprocal lattice vectorsk in the first
Brillouin zone. Each character is given asxk(w)5eik•w. The
Gutzwiller trace formula for the system with discrete sym-
metry was investigated in@26,27# and@28# for the zeta func-
tion form. The symmetry projected Gutzwiller trace formula
is given as

g~E!5 (
mPg

gm~E!, ~22!

gm
sc~E!5

dm
i\ (

p

Tp
uKpu

(
r51

`

xm~gp
r !

expF ir SSp\ 2
mpp

2 D G
udet~M p

r 2I !u1/2
,

~23!

wherem is the index for the irreducible representation,dm is
the dimension of themth irreducible representation,uKpu is
the order of the subgroupKp of the groupG, andxm(gp) is
the character of the symmetry operationgp for themth rep-
resentation. For the system considered here, the irreducible
representations are labeled by the vectork and the symmetry
operation is represented by the vectorwp for the primitive
periodic orbit p. Thus, the characterxm(gp) becomes
xk(wp). Equations~22! and ~23! are rewritten as
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g~E!5 (
kPg

gk~E!, ~24!

gk
sc~E!5

dk
i\ (

p

Tp
uKpu

(
r51

` expF ir SSp\ 2
mpp

2
1k•wpD G

udet~M p
r 2I !u1/2

.

~25!

Next we consider how the Bloch parameter modifies the
above-trace formula. If we define the translation operator
U(f) as U(f)[eif•q/L, then we getU†(f)H(p,q)U(f)
5H(p1\f/L,q). The propagator

K~x,y;t ![^xue2 iHt /\uy& ~26!

is modified as

K~x,y;t;f!5e2 if•~x2y!/LK~x,y;t !. ~27!

Then concerning the Guztwiller trace formula, the contribu-
tion of each periodic orbit to the density of states is weighted

by the factor exp(2if•wp), wherewp is the winding vector.
Therefore, the Gutzwiller trace formula for the system with
the Bloch boundary condition is given as

gk
sc~E;f!5

dk
i\ (

p

Tp
uKpu

3(
r51

` expH ir FSp\ 2
mpp

2
1~k2f!•wpG J

udet~M p
r 2I !u1/2

.

~28!

2. Semiclassical evaluation of level curvature

Rewriting the Gutzwiller trace formula into the zeta func-
tion form @29,30#, the corresponding Selberg-type zeta func-
tion for the irreducible representationk is given as

Zk~E;f!5Cexp[2 ipN0~E!] )
j 1,...,j f2150

`

)
p S 12

expH i FSp\ 2
mpp

2
1~k2f!•wpG J

)
k21

f21

ulp
~k!u1/2lp

~k! j k D mp

, ~29!

where mp5dk /uKpu is the multiplicity of the prime
periodic orbits, C is an appropriate constant, and
lp
(k) (k51, . . . ,f21) is the expanding eigenvalue of the

monodromy matrix. The relation to the density of states is
achieved by

dk~E;f!52
1

p
I(

n

1

E2En~f!
52

1

p
I
Zk8~E;f!

Zk~E;f!
.

~30!

From here on, by using this zeta function, we obtain the
Thouless formula in terms of periodic orbits. The argument
developed here is completely parallel to the classical case
@14,15# in the preceding section.

First we assume that the zeta function is expanded near
the eigenvalueEn(f), namely there is no degeneracy~this
condition is relevant to classically chaotic quantum system!,
as @31#

Zk~E;f!5@E2En~f!#$c0~f!1c1~f!@E2En~f!#1•••%,
~31!

where

c0~f!5
]Zk~E;f!

]E U
E5En~f!

, ~32!

c1~f!5
1

2!

]2Zk~E;f!

]E2 U
E5En~f!

. ~33!

Differentiating the zeta function with respect tof i and set-
ting E5En(f), we obtain

]En~f!

]f i
52

1

c0~f!

]Zk~E;f!

]f i
U
E5En~f!

. ~34!

In a similar way, once more differentiating the zeta function
and using Eq.~34!,

]2En~f!

]f i
2 52

1

c0~f! F ]2Zk~E;f!

]f i
2 U

E5En~f!

2
2

c0~f!

]c0~f!

]f i

]Zk~E;f!

]f i
U
E5En~f!

1
2c1~f!

c0~f!2 S ]Zk~E;f!

]f i
U
E5En~f!

D 2G . ~35!
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To evaluate the individual terms on the rhs of Eq.~35!, we
use the cycle expansion technique. In order to avoid the com-
plicated formula which comes fromlp

(k) , we consider a two-
dimensional system. As in@23#, we rewrite the zeta function
in the Euler product as follows:

Zk~E;f!5Cexp@2 ipN0~E!#)
l50

`

)
p

~12tp,l !
mp

5Cexp@2 ipN0~E!#S 12(
k
t̃ p

181p
281•••1p

k8D ,
~36!

where

t̃ p8[tp,l5

expH i FSp\ 2
mpp

2
1~k2f!•wpG J

uLpu1/2Lp
l ~37!

and

t̃ p
181p

281•••1p
k8
5~21!k11t̃ p

18
t̃ p

28
••• t̃ p

k8
. ~38!

Herep8 is the pair of (p,l ). The system considered here is
bounded by symmetry. Then the repetition of prime periodic
orbits will be needed for the semiclassical calculation of ei-
genvalues, differing from the classical case. The derivative
of the zeta function with respect tof i is given as

]Zk~E;f!

]f i
5Cexp@2 ipN0~E!#

]

]f i
S 12(

k
t̃ p

181p
281•••1p

k8D
5 iCexp@2 ipN0~E!#(

k

3~wp1
i 1wp2

i 1•••1wpk
i ! t̃ p

181p
281•••1p

k8
, ~39!

and

]2Zk~E;f!

]f i
2 5

]2

]f i
2 S 12(

k
t̃ p

181p
281•••1p

k8D
5(

k
~wp1

i 1wp2
i 1•••1wpk

i !2t̃ p
181p

281•••1p
k8
.

~40!

Here we assume thatN0(E) is independent off i . This holds
for the leading order approximation in\. c0(f) andc1(f)
are evaluated as follows. The derivative oftpi with respect to
E now becomes

]

]E
t̃p

i8
5 t̃ p

i8H i\ ]Spi
]E

2
]

]E
~ uLpi

u2 ~1/2!Lpi

2 l i !J . ~41!

We assume that the second term is negligible. This holds for
the case in which the corresponding periodic orbit is away
from the bifuncation points. Thus,

c0~E;f!5
]Zk~E;f!

]E

5exp@2 ipN0~E!#H 2 ipd0~E!

3S 12(
k
t̃ p

181p
281•••1p

k8D
1

1

i\(
k

~Tp11Tp21•••1Tpk! t̃ p181p
281•••1p

k8J ,
~42!

where we used the relation

]Sp
]E

5Tp . ~43!

Now we can interpret the individual terms on the rhs of Eq.
~35!. First,

]En~f!

]f i
52

1

c0~f!

]Zk~E;f!

]f i
U
E5En~f!

5\

(
k

~wp1
i 1wp2

i 1•••1wpk
i ! t̃ p

181p
281•••1p

k8

(
k

~Tp11Tp21•••1Tpk! t̃ p181p
281•••1p

k8
U

E5En~f!

~44!

can be interpreted as thedrift term, which is the group velocity. If the system possesses some symmetry, this term may vanish.
We assume that the system has such symmetry. Now if]En /]f50 ~this holds forf50 usually!, Eq. ~35! becomes

]2En~f!

]f i
2 52

1

c0~f!

]2Zk~E;f!

]f i
2 U

E5En~f!

52 i\

(
k

~wp1
i 1wp2

i 1•••1wpk
i !2t̃ p

181p
281•••1p

k8

(
k

~Tp11Tp21•••1Tpk! t̃ p181p
281•••1p

k8
U

E5En~f!

, ~45!
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where we used in Eq.~42!

12(
k
t̃ p

181p
281•••1p

k8
50, ~46!

that is, the condition thatEn(f) is a zero of the zeta func-
tion. Here it turns out that Eq.~45! is the semiclassical ana-
log of the classical diffusion coefficient.

In order to compare it with the exact quantum result, we
can use the result of level dynamics for the autonomous
Hamiltonian system@32,33,22,34#. The Hamiltonian is now

Ĥ~f!5Ĥ01
\f•p̂

mL
1

\2f2

2mL2
. ~47!

Here we put

V̂5
\p̂

mL
. ~48!

Then after some calculation, we obtain the following set of
equations@32,33,22,34#:

]f i
En~f!5Vi ,nn5^nuV̂i un&, ~49!

]f i

2 En~f!52(
mÞn

uVi ,nmu2

En2Em
, ~50!

]f i
]f j

En52(
mÞn

R
Vi ,nmVj ,mn

En2Em
, ~51!

]f i
un&5 (

mÞn
um&

Vi ,mn

En2Em
, ~52!

]f i
^nu5 (

mÞn
^mu

Vi ,nm

En2Em
, ~53!

where Vi ,nm[^nuVi um&. Equations~50! and ~51! give the
exact level curvatures. Here we subtract the term
\2f2/2mL2 from the original eigenvalue:

En5Enuorg2
\2ufu2

2mL2
. ~54!

Finally, we summarize the relation between the classical case
in Sec. III A and the semiclassical case in this section in
Table II.

C. Semiclassical level curvature for kicked systems

In this section, we derive the semiclassical level curvature
in terms of periodic orbits for the kicked systems.

1. The exact quantum result: Level dynamics

The one-dimensional kicked system has the following
Hamiltonian:

Ĥ5 f ~ p̂!1g~ q̂! (
n52`

1`

d~ t2n!. ~55!

The periodic boundary condition can be applied to both the
p axis andq axis. If it is applied to both axes, setting period
1, then, due to the compactness of the phase space, the un-
certainty principle is given by

1

2p\
5N, ~56!

TABLE II. Comparison between the classical and semiclassical results for the autonomous Hamiltonian
systems: The Gutzwiller-Voros zeta function is for two-dimensional systems.

Classical result Semiclassical result

Weighted Frobenius-Perron kernel Feynman kernel for the system

Lt( ŷ,x)5eb•( ŷ2x)d„ŷ2f t(x)… K(x,y;t)5e2 if•(x2y)/L^xue2 iĤ t/\uy&
.e2 if•(x2y)/L(bAbe

iSb /\2 ipm/4

Fredholm determinant Spectral determinant
det(12zL)50 det(E2Ĥ)50
Associated Ruelle zeta function Gutzwiller-Voros zeta function

1

z~b;s!
5)

p
~12tp!

1
zk(E;f)

5exp„2pN0(E)…) l)p(12tp,l)

tp5
eb•wp2stp

uLpu tp,l5expFiSSp\ 2
mpp

2
1~k2f!•wpD G

3uLpu21/2Lp
2 l

Generating function Eigenenergy

Q(b)5 limt→`

1
t
ln^eb•( x̂t2x)&

En
k(f)

Condition:1/z„b,Q(b)…50 Condition:1/zk(En
k ,f)50

Diffusion coefficient Level curvature~inverse of effective mass!

D5
1

2d(j51

d
]2

]bj
2Q~b!U

b50

]2En
k

]f2 S 5
1

m*
D
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where N is the number of lattice points. Throughout the
present paper, we consider the case that the phase space is
torus. The time evolution operatorÛ is given as

Û5expS 2
i

\
f ~ p̂! DexpS 2

i

\
g~ q̂! D . ~57!

Here according to the periodic boundary conditions,f ( p̂)
andg(q̂) should be

f ~ p̂11!5 f ~ p̂!,

g~ q̂11!5g~ q̂!.

In a similar way to the Bloch boundary condition in solid
states physics, we can introduce the following transforma-
tion:

q̂→q̂1\b, ~58!

p̂→ p̂1\a. ~59!

This transformation corresponds to the boundary condition
for the wave functions,

c~q11!5exp~ ia!c~q!, ~60!

c̄~p21!5exp~ ib!c̄~p!. ~61!

For simplicity, we introduce the setu[(a,b) of the vari-
ablesa andb. Then the time evolution operatorÛ(u) be-
comes

Û~u!5expS 2
i

\
f ~ p̂1\a! DexpS 2

i

\
g~ q̂1\b! D .

~62!

It is related toÛ by the operatorR̂5exp@2ibp̂#exp@iaq̂# as

Û~u!5R̂†ÛR̂. ~63!

The eigenvalue problem for our case is

Û~u!un&5eivn~u!un&. ~64!

After the some calculation, the derivatives ofvn(u) are
given as

]vn

]a
52

1

\ K nU ]

]a
@ f ~ p̂1\a!#UnL , ~65!

]vn

]b
52

1

\ K nU ]

]b
@g~ q̂1\b!#UnL , ~66!

]2vn

]a2 5
1

\2 (
mÞn

ZK nU ]

]a
@ f ~ q̂1\a!#UmL Z2cot@~vn2vm!/2#

2
1

\ K nU ]2

]a2 @ f ~ q̂1\a!#UnL , ~67!

]2vn

]b2 5
1

\2 (
mÞn

ZK nU ]

]b
@g~ q̂1\b!#UmL Z2cot@~vn2vm!/2#

2
1

\ K nU ]2

]b2 @g~ q̂1\b!#UnL , ~68!

]2vn

]a]b
5
2

\2R (
mÞn

K nU ]

]a
@ f ~ p̂1\a!#UmL

3 KmU ]

]b
@g~ q̂1\b!#UnL 1

12exp„i ~vn2vm!…
.

~69!

2. Semiclassical evaluation of level curvatures
for kicked systems

To evaluate the curvature of the eigenangle semiclassi-
cally, we use the zeta function formalism again. As men-
tioned before, we consider the torus case. For this case, the
formalism is greatly simplified. First, we must derive the
Selberg-type zeta function for the quantum kicked system
@35#. Since eigenangles are periodic with period 2p, then the
density of states for eigenangles is given as

d~v;u!5 (
n51

N

(
l52`

1`

d@v2vn~u!22p l #. ~70!

This density of states should be connected with the following
spectral determinant:

P~z;u!5det„z2Û~u!…50, ~71!

wherez5eiv . The relation is achieved by

d~v;u!52
1

p
I
d

dv
lnP~ei ~v1 i e!!, ~72!

wheree.0. Because of the finiteness of the time-evolution
operatorÛ(u), Eq. ~71! is expressed in the finite series:

P~z;u!5 (
n50

N

anz
n, ~73!

where the coefficientsak for k51, . . . ,N satisfy the Newton
relation @35#,

aN2k52
1

k (
n51

k

aN2k1n Tr„Û
n~u!…. ~74!

To investigate the spectral property, it is convenient to con-
sider the following zeta function:

Z~v;u!5e2 i ~Q1Nv!/2P~eiv!, ~75!

where

eiQ5expi F S (
j51

N

v j D 2NpG5det„2Û~u!…, ~76!

andv j are the eigenangles. We can obtain this formula along
the analog of the derivation of the Riemann-Siegel look-alike
formula @30#. We note here that for realv, this zeta function
Z(v) crosses on the real axis andak is related toaN2k ~self-
inversive property!:
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ak5aN2k* eiQ. ~77!

The semiclassical analysis enables us to show that the trace
of integer power ofÛ is given as@36#

Trsc„Ûn~u!…5 i n (
p,n5npr

np

Audet~Mp
r 2I !u

expF i\ Sp1 iwp,pb

2 iwp,qa2
ipnp

2 G , ~78!

where the actionSp is

Sp5 (
i50

n21

$2@ f ~pi !1g~qi !#1pi11~qi112qi !

2wp
~ i !qi1wq

~ i21!pi% ~79!

and the total winding numberswq andwp for the q and p
coordinates are given as

wp5 (
i50

n21

wp
~ i ! ,

wq5 (
i50

n21

wq
~ i ! , ~80!

respectively. SinceQ→0 as \→0, then the semiclassical
zeta function is given as follows@35#:

Zsc~v;u!5 (
l50

[N/2]2«N

@AN2 l* ei ~ l2N/2!v1AN2 le
2 i ~ l2N/2!v#

1
1

2
«N~AN/21AN/2* !, ~81!

where«N51 for evenN, 0 for oddN, and

Ak52
1

k (
n51

k

AN2k1n Tr
sc
„Ûn~u!…. ~82!

In a similar way as in Sec. III B 2, we obtain the semiclas-
sical expression for the curvature of the eigenangle given as

]2vn

]a2 52
]2Zsc~v;u!

]a2 U
v5vn~a!

S ]Zsc~v;u!

]v U
v5vn~a!

D 21

.

~83!

Here we note that both denominator and divisor of Eq.~83!
include the analytical bootstrap effect, although we do not
write them explicitly.

IV. COMPARISON WITH KUBO FORMULA

In order to unify the theoretical understanding of the
quantum transport process, the Thouless formula should be
compared with the other formula on the conductivity, espe-
cially the Kubo formula:

smn5
negs
V E dES 2

d f

dEDsmn~E!, ~84!

where

smn~E!5pe2\ Tr@ v̂md~E2Ĥ !v̂nd~E2Ĥ !#, ~85!

and f (E) is an appropriate averaging function such as the
Fermi-Dirac or Bose-Einstein distribution andV is the vol-
ume of the system. The Thouless formula represents the av-
erage conductance. Then, we need the averaging process for
the Kubo formula. Using the appropriate averaging, Akker-
mans@37# found the relation between the Kubo conductivity
and Thouless conductance within the framework of the ran-
dom matrix theory. First remember the process of the deri-
vation of both formulas. We know that if we start from the
time-independent Hamiltonian~see the Appendix!, the con-
ductivity s is proportional to the level curvature~i.e., equi-
librium property!. On the other hand, starting from the time-
dependent approach~the adiabatic switching of the
perturbation!, the Kubo formula is obtained from the use of
the von Neumann–Liouville equation~i.e., nonequilibrium
property!. The situation for the derivation of both formulas is
summarized in Table I. The question here is as follows: Is
the Thouless formula the same as the Kubo formula, or what
is the common part in both formulas? Furthermore, we also
question whether the underlying classical chaos positively
plays an essential role for the relation between both Kubo
and Thouless formulas or not. To answer these questions, the
relation derived by Akkermans@37# is interesting, and is
given as

K S ]E

]f D 2L 5p2aDK ]2E

]f2 U
f50

2 L 1/2

, ~86!

where the overbar represents the average overf, D is the
mean level spacing, the brackets represent the energy level
average, anda51/(pA6). The lhs and rhs represent the
Kubo formula ~the current-current autocorrelation function!
and the Thouless formula, respectively. However, the Kubo
formula on the lhs is different from the usual Kubo formula.
Here the current-current correlation function is time-
averaged over the linearly time-dependent fluxf. On the
other hand, the Kubo formula is evaluated at thef50 ~see
the derivation of the Kubo formula@20,38#!. The assumption
used here is essentially that the Hamiltonian belongs to GOE
for f50 and GUE forfÞ0.

Equation~86! suggests that there is some relation between
the classical results. First, from another route~see@11#!, us-
ing the diagonal approximation and assuming the Gaussian
distribution of winding numbers, the rhs of Eq.~86! can be
shown to be

K S ]E

]f D 2L 5S w*\T* D
2

, ~87!

wherew*5A2p\d0j/T0 , T0 is the shortest period of peri-
odic orbits, andjT/T0 is the variance of the winding number
for the periodic orbits around periodT. If we put
T*52p\d0, the rhs of Eq.~87! is the variance of the wind-
ing number with periodT* . On the other hand, from the
expression of the level curvature Eq.~45!, the rhs of Eq.~86!
can be considered as the fourth cumulant of winding num-
bers. Therefore, Eq.~86! implies that the flatness factor of
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the winding numbers is constant. This may be related to the
distribution of the winding numbers~e.g., Gaussian distribu-
tion!, although we do not show this explicitly within our
theory because of the complicated formula for the level ve-
locity and curvature. However, it is clear that the validity of
Akkermans’s relation depends on the validity of the diagonal
approximation@11# for the energy average in both sides of
Eq. ~86!, that is, how the decoherence in the off-diagonal
terms is realized. The decoherence is assured for the quan-
tized chaotic systems, since the actions of the periodic orbits
around a certain value of action are distributed randomly~for
instance@39#, for a dispersing billiard system!. Note that Ak-
kermans’s relation is also valid for diffusive mesoscopic sys-
tems@37#. In short, it seems that the Gaussian distribution of
the winding number and the decoherence is responsible for
the validity of Akkermans’s relation. Conversely, in general
cases, the underlying classical dynamics affects the validity
of Eq. ~86!. This will be shown in the next section.

V. NUMERICAL TEST

In Sec. III, we have derived the semiclassical expression
for the level curvature formally. Naturally, the following
questions arise:~i! How can the expression obtained here
work? Do we need the higher order corrections?~ii ! Where
do we find the localization property? In order to answer these
questions, we have to test the expression obtained on an
appropriate model. We choose the quantized kicked rotator
system as a model system. The next aim of this section is to
check Akkermans’s relation.

A. The test of semiclassical curvature

We use the kicked rotator system for the test of semiclas-
sical curvature. The kicked rotator system is a well known
and well investigated model@40–42#. The classical dynamics
is defined as a simple two-dimensional map:

qn115qn1pn11 , mod 2p,

pn115pn1Ksin~qn!. ~88!

Here the phase space is a cylinder. However, we can also
impose the periodic boundary condition to the momentum
axis. For this case, the phase space isT2. It is known by the
numerical experiment and the rough estimation@43# that the
diffusion coefficient in the momentum space behaves like

D;
K2

4
for largeK. ~89!

The corresponding quantum system is defined by the follow-
ing Hamiltonian:

Ĥ5
p̂2

2
1Kcos~ q̂1\a! (

n52`

`

d~ t2n!, ~90!

where a is the Bloch parameter (2p<a,p). The time
evolution operator is defined as

Û5e2 ~ i /\! ~ p̂2/2!e2 ~ i /\! Kcos~ q̂1\a!. ~91!

For simplicity, we choose\ as\52p/N, whereN is a posi-
tive integer. Using the Fourier bases, the matrix elements of
the time evolution operator Eq.~91! are given as

Unm5
1

N
e2 i\ ~m2/2!(

j51

N

ei ~m2n!u je2 iycos~u j !, ~92!

where

\5
2p

N
, y5

KN

2p
, u j5

2p j1a

N
. ~93!

Now we evaluate the level curvature for the quantized kicked
rotator system. However, the kicked rotator system is a non-
hyperbolic system. The enumeration of the periodic orbit in-
cluding the complex one is very hard. Then, as the first step,
we consider the caseN52, namely an extremely deep quan-
tum regime. The secular determinant for this case is given as

P~v;a!5det„z2Û~a!…

5e2iv2 Tr„Û~a!…eiv1det„Û~a!…

5~eiv2eiv1~a!!~eiv2eiv2~a!!, ~94!

wherez5eiv. We know that the determinant det„Û(a)… is
given as

det„Û~a!…52 i ~95!

and the eigenangles are explicitly given as

v65 logS 12 $~12h i !6A2ih214ig2% D , ~96!

where

h5sinFKpcosS a

2 D G , g5cosFKpcosS a

2 D G . ~97!

The trace ofÛ(a) can be expressed as

Tr„Û~a!…5A 1

2i(j51

2

e2 izcos~u j !

5A2

i S J0~z!12(
m51

`

J2m~z!e2 impcos~ma!D .
~98!

The semiclassical evaluation of the trace Tr(Û) can be
found in @44#. We omit the details here. However, we only
note that each Bessel function corresponds to a contribution
of one~real or complex! periodic orbit. Then, the number of
all periodic orbits is infinite. Furthermore, since each contri-
bution from a real periodic orbit is the oscillating one with
respect toa, the number of real periodic orbits controls the
nodal pattern of the parametric motion of eigenangles. In
other words, the topological richness of the underlying clas-
sical dynamics determines the complexity of the band struc-
ture. ~See Fig. 2 forK51,15,25.! The exact and semiclassi-
cal band structure forK510.0 are depicted in Fig. 3. In this
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calculation, we did not need a uniform approximation for
real periodic orbits but we did need one for some complex
periodic orbits and used the result of the asymptotic approxi-
mation of the Bessel function@45,46#. The agreement is ex-
cellent for the case of including the complex orbits. In Table
III, the value of the level curvature for each order of approxi-

mationis listed. It was shown that the complex orbits play an
important role for the semiclassical evaluation of the level
curvature.

B. The test of Akkermans’s relation

First we confirm the validity of the proportional relation
between the Kubo and Thouless formula derived by Akker-
mans@37#. We choose the quantized kicked rotator system as
a model system and consider the transport phenomena in the
momentum space. In Fig. 4, the typical behavior of the level
dynamics for the kicked rotator system with respect to the
Bloch parameter is depicted. Comparing Fig. 4~a! with 4~b!,
the motion of the energies of 4~b! is much more complicated.
This behavior may correspond to the topological richness
~i.e., the topological entropy! of the classical dynamics. For
Tr(Û), this is easily confirmed as mentioned in Sec. III. In
Fig. 5, we depict theN-dependence of the ratioA for several
values ofK, where

A5

K S ]vn

]a D 2L
DK ]2vn

]a2 U
a50

2 L 1/2, ~99!

and\52p/N. As we can see from Fig. 5, for large values of
K in which the corresponding classical dynamics exhibits
global chaos, Akkermans’s relation is observed in the semi-
classical regime~large \52p/N). On the other hand, for
small values ofK, Akkermans’s relation breaks down. Its
qualitative behavior can be summarized as

~i! A; constant for largeK, N ,

~ii ! A;N2g~K ! for smallK. ~100!

It seems that the transition of this behavior actually corre-
sponds to the breakup of the last KAM tori. The breakup of
the KAM torus occurs atK;0.97. Regime~i! can be re-
garded as the metallic regime. In this regime, the classical
dynamics exhibits globally chaotic motion. On the other
hand, regime~ii ! corresponds to the localization regime. This
regime is a classically integrable regime. The localization is
due to the fact that the eigenwave function has the support of
the tori in classical dynamics. The intermediate regime cor-
responds to the transition to the global diffusion. Akker-

FIG. 2. Band structure forK51,15,25.

FIG. 3. Band structure: exact and semiclassical~from the lead-
ing to third orders! K510.0.

TABLE III. Level curvature forN52: exact and semiclassical
results ~from the leading to fifth orders! for K510.0: Two ei-
genangles are symmetric to each other. Then we list one value only.

Order of Approximation Curvature

Exact 3.299171820634989931022

Leading 1.62909618105394953100

Second 2.816235185109358731021

Third 1.096521723633349631022

Fourth 3.543355340899400531022

Fifth 3.429897825250278331022

54 3601SEMICLASSICAL LEVEL CURVATURES AND QUANTUM . . .



mans’s relation Eq.~86! is valid for a globally chaotic (K
large! and semiclassical (\ small! regime. Akkermans used
the Thouless conductance

g5
1

D K ]2vn

]a2 U
a50

2 L 1/2

. ~101!

Another definition of the Thouless conductance is

g85
1

D K U]2vn

]a2 U
a50

L . ~102!

We plot the following relation, which is similar to Akker-
mans’s relation

A85

K S ]vn

]a D 2L
DK U ]2vn

]a2 U
a50

L ~103!

FIG. 4. Level dynamics for the kicked rotator system: The ver-
tical and horizontal axes represent the eigenanglev/2p and the
Bloch parametera/2p. The parameters are chosen as~a! K55.0,
N52p/\564; ~b! K520.0,N52p/\564.

FIG. 5. Check of Akkermans’s relation: The vertical axis
represents the ratioA. The horizontal axis representsN
52p/\ in the log scale. We plot the data for
K50.8,1.0,2.0,5.0,10.0,15.0,20.0,25.0.

FIG. 6. Check of Akkermans’s relation: The vertical axis
represents the ratioA8. The horizontal axis representsN
52p/\ in the log scale. We plot the data for
K50.8,1.0,2.0,5.0,10.0,15.0,20.0,25.0. The behavior is similar to
Fig. 5.
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in Fig. 6. There is no drastic change compared with Fig. 5.
A andA8 tend to be constant. However, since the fluctuation
is very large, we cannot determine the universal constant
from the numerical data. Figure 7 shows theN dependence
of the velocity-velocity correlation function. For largeN, we
see the tendency of the slow decay with respect toN. In Fig.
8, we depict theK dependence of the velocity-velocity cor-
relation function. After the breakup of the classical tori, it
behaves like

K S ]vn

]a D 2L ;K2. ~104!

In Fig. 9, theK dependence of the Thouless conductanceg
andg8 are depicted, respectively. Their behavior is similar to
the velocity-velocity correlation function, i.e.,

g ~or g8!;K2. In Fig. 10 and Fig. 11, theN dependences of
the Thouless conductanceg and g8 are depicted, respec-
tively. This shows thatg andg8;\21. The numerical cal-
culation here suggests that the Thouless formula essentially
measures the classical diffusion coefficient.

VI. CONCLUSION

In this paper, we have derived the semiclassical expres-
sion of the level velocity~the group velocity or crystal ve-
locity! and level curvature~the effective mass forf50) for
systems with the periodic lattice symmetry. Using the semi-
classical expression, the theoretical foundation of the Thou-
less conductance was reconsidered. It turned out that the
Thouless conductance essentially measures the classical dif-

FIG. 7. Velocity-velocity correlation function vsN.

FIG. 8. Velocity-velocity correlation function vsK.

FIG. 9. g or g8 vs K: the solid line ~dashed line! is for g
(g8).

FIG. 10. g vs N.
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fusion coefficient and the underlying chaos plays a very im-
portant role as a decoherent effect. The decoherence origi-
nated in the classical counterpart allows us to wash out the
quantum fluctuation by the energy averaging. The numerical
calculation supports this. By this work, the intuitive approxi-
mation in solid state physics, such as the replacement of the
Thouless conductance by the diffusion coefficient, is surely
justified. Conversely, the author hopes that this work stimu-
lates the study of the localization problem, which was the
original motivation of Thouless. In addition, the Thouless
formula can be regarded as a variant of the semiclassical sum
rule @47,31#. In Sec. IV, it was roughly speculated that this
may be related to the distribution of the winding numbers of
periodic orbits, perhaps the Gaussian distribution@48,49#.
The author hopes there will be a numerical check of this by
a simple system and much more rigorous derivation of it
from the Gutzwiller-Voros zeta function or Ruelle’s dynami-
cal zeta function. Beside the mean behavior of the conduc-
tance, the fluctuation of the conductance is also accessible
from the method here. It may provide us with the previous
result found in@50#.

From the numerical test and the theoretical aspect, we
found several interesting points.~i! In the numerical test of
the semiclassical level curvature, we found that the inclusion
of complex trajectories makes a drastic change. Furthermore,
our test was limited to the contribution of fixed points. The
interference of periodic orbits was not investigated here. Re-
cently the contribution of complex trajectories to wave
packet dynamics was investigated and the fine structure of
the quantum interference was elucidated@51#. Concerning
the transport property, the investigation for the interference
of periodic orbits will be needed. More generally, the inves-
tigation of higher-order\-correction is required not only for
the oscillation part but also for the mean part in the density
of states. The\-correction sometimes becomes important.
For instance, the next leading order term in the Weyl term
affects the magnetization of two-dimensional noninteracting

electron gas@52#. The effect of higher\-correction~to both
the mean and oscillation parts! for level curvatures is now in
preparation@53#. ~ii ! The topological richness of the under-
lying classical dynamics complicates the band structure, that
is, the oscillation of the parametric motion of the giveni th
energy is determined by the number of the periodic orbits. If
the one-body description of the system is supported and spin-
orbit interaction is negligible, this suggests the possibility of
finding the signature of the underlying classical dynamics
from the experimental data.~iii ! Using Akkerman’s relation,
we conjecture the sum rule on the winding number of peri-
odic orbits. From this observation, it is suggested that the
universal constant in the random matrix theory might be re-
lated to the universal relation in the underlying classical cha-
otic dynamics. It is worth investigating the other universal
constant of the random matrix theory.

Finally, before closing this paper, I must mention an ex-
cellent review on the subject of this paper from the random
matrix theory@54#. I strongly recommend that readers con-
sult this review.
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APPENDIX

Consider the following Hamiltonian describing the system
in the static electric field:

Ĥ5Ĥ01 Ĵ•E. ~A1!

By using the usual perturbation theory, we can show that the
current operatorĴ(t)[e( v̂' Ĵ01d Ĵ from the electron occu-
pying thenth eigenenergy~Fermi energy! in the linear order
of the electric fieldE is expressed as

^Ĵ&522E(
mÞn

z^nuĴum& z2

En2Em
H 12cosS ~En2Em!t

\ D J ,
~A2!

where we assumed thatĴ050 and there is no degeneracy
which corresponds to our case. If the level degeneracy exists,
the perturbation theory should be modified. This implies that
the theory is modified by whether the underlying classical
mechanics is chaotic or not. The bras and kets are the eigen-

FIG. 11. g8 vs N.
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states for the HamiltonianH0. The second term will vanish
in the time average. Thus the current^Ĵ& becomes

^ Ĵ&52E
]2En

]E2 U
E50

. ~A3!

Then the conductivitys is

s52d~En!
]2En

]E2 U
E50

, ~A4!

where we multiply the density of states at thenth eigenen-
ergyEn . From this, we see that the Thouless formula repre-
sents the equilibrium property of the system@55–57#.
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