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Semiclassical level curvatures and quantum transport phenomena
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The semiclassical expression of level curvature for quantized chaotic systems with periodic lattice symmetry
is derived. From this expression, the transport property of such systems is investigated via the Thouless
formula. The relation between the Thouless formula and the Kubo formula is studied in an unusual way. It is
revealed that Akkermans’s result on the relation between them from random matrix theory, which is for the
metallic regime, corresponds to the universality of the underlying classical chaotic dynamics. The test of the
expression obtained here is done for the quantized kicked rotator syS§&663-651X96)11810-9

PACS numbgs): 05.60+w, 05.45:+b, 03.65.Sq, 03.40.Kf

I. INTRODUCTION vation of the Thouless formula is hypothetical as shown later
in Sec. Il. It is natural to ask about the theoretical foundation
In this paper, motivated by recent extensive studies omf the Thouless formula. Therefore, the main aim of this
guantum chaology, mesoscopic systems, and foundation @aper is to answer this question.
statistical mechanics, we discuss the transport phenomena in To this end, we employ the semiclassical theory. The ad-
quantized chaotic systems. In order to characterize the trangantage of the semiclassical theory is as follo¢as We can
port property of mesoscopic systems, one uses several fofmderstand the quantum phenomena in terms of the underly-
mulas, i.e., Kubo formul@l,2], Thouless formuld3,4], Lan-  ing classical dynamics. We fully use the classical-quantum
dauer formula[5,6], and Byers-Yang formul&7]. Among  correspondence in some seng®. Recent development of
them, the Kubo formula is derived from the microscopic dy-“chaos theory” in classical mechanics provides us with a
namics with the assumption of ergodicity and the adiabatigarge amount of useful informatiorfc) If the semiclassical
switching of external field. In this sense, the Kubo formula istheory is employed in an appropriate way, we obtain high
the most fundamental and reliable among the above formuaccuracy compared with a quantum exact result.
las, because the others are hypothetical and only for the spe- Here we briefly comment on poirib). To calculate the
cific systems. transport coefficient from the microscopic levels is still the
Recent studies on mesoscopic systems examine the pafigmin subject of nonequilibrium statistical mechanics. The
metric dependence of the energy levels from several viewecent progress of “chaos theory” and the related numerical
points, i.e., usual and field theoretical random matrix theorysimulation of molecular dynamics show that for hard chaotic
[8,9] and semiclassical theofjt0,11. Their interest is fo-  systems, the transport coefficient can be explicitly expressed
cused at the two-point correlation of energy levels, namelyin terms of the dynamical characteristic quantities such as
(d(E,\)d(E+AE,N+d\)), whereE is energy\ is the sys- | yapunov exponents, escape rates, etc. There are three fun-
tem parameter, and(E,\) is the density of states. If the damental contributions. First is the escape rate formalism by
parametric dependence is due to symmetry of systengs, Gasparcet al.[12,13. Second is the cycle expansion by Cvi-
periodicity), we can consider the transport property by usingtanovic[14,15. As is shown later, this formalism is particu-
the Thouless formula or Byers-Yang formula. In such ajarly useful for our semiclassical analysis. Third is the math-
study, the Thouless formula particularly plays an essentiaématical rigorous proof by Chernat al. [16]. From these
role. The sensitivity of the energy level to the change of thecontributions, we now know that “chaos” indeed plays an
boundary condition provides us with the conductance of amportant role for the foundation of nonequilibrium statisti-

given system via the Thouless formula: cal mechanics. At the same time, the validity of the classical
1 /132 Kubo formula was reconsidered from the aspect of chaos
g=— g =n (1) theoretically[16] and numerically since van Kampen’s ob-
A\[ag* |, o/ jection[17].

Turning our attention from a classical object to a quantum
where ¢ is the Bloch parameter and the bracket means thebject in the context of transport phenomena, what changes?
average over the whole energy levels. The first derivativlRecently the semiclassical Kubo formula was derived and
JEld¢ and second derivativé’E/J¢? are called the level applied to the magnetoconductivity and de Haas—van Alphen
velocity and level curvature, respectively. However, the derieffect by several authorgl8,19. In their work, the Kubo

formula is expressed in terms of the characteristics of the

periodic orbits for quantized chaotic systems. As well as the

“Present address: Department of Fundamental Sciences, Facul§ubo formula, another formula for the transport coefficient
of Integrated Human Studies, Kyoto University, Sakyo-ku, Kyoto,as mentioned before can be semiclassically analyzed. The
606-01, Japan. derived semiclassical expression directly enables us to eluci-
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date the process of the quantum interference in transport phe- 1|[FPE () 72l 1 1 |(a|fgx|lg>|2
nomena. In order to derive the semiclassical expression foAE,=5||—7— =712 —+72 r=r=-sai b

d L°|2m m%z. E, Eg
the Thouless formula Eq1), we use a formal analogy of the $=0

zeta function formalisn{i.e., cycle expansion As we will (6)
show later in Sec. lll, for quantized chaotic systems with the o\ we assumed that there is no degeneracy. This is

periodic boundary condition, it turns out that the semiclassiqngjstent with the later analysis for quantized chaotic sys-
cal expression of level curvatufee., the inverse of effective

mass is a quantum analog of the classical diffusion coeffi-

cient derived iri14,15. L—oo by using if(dX/dt)=[X,H]. However, for the ex-

This paper is organized as follows. In Sec. Il, we intro- 7 ! S .
o tended state, since the eigenwave function is extended in the
duce the Thouless formula along the original Thouless 894 hole range, the evaluation for the localized state cannot
ment. In Sec. lll, we derive the semiclassical expression for ge,

the level curvaturéi.e., the inverse of the effective mader \(,avol:gti?)i L;:];i'oga;?gzé WSeo Cvign;t]oléssz t:r?oﬁglrsfgfgao
both autonomous Hamiltonian systems and kicked Hamil- q ' . o
tonian systems. In Sec. IV, we compare the Thouless for_evaluateAEa. The order of the energy difference is given as

For the localized state, it can be shown thd ,=0 as

mula with the Kubo formula in a semiclassical way. In Sec. 1

V, the numerical calculation is reported. For the quantized E,—Ez~O manT |- )
kicked rotator, Akkermans’s relation and the semiclassical -

level curvature derived here are tested. In Sec. VI, we sum- dE

marize the results. . L
This replacement implies that the energy levels are uncorre-

Il. THOULESS FORMULA lated.AE, can be approximated by

2
In this section, we derive the Thouless formula along the AE. ~ h_2 izﬁd_N (8)
original Thouless’s argument and reexamine it under the ¢ L*m" dE’
consideration of the application to quantized chaotic sys- — N
tems. Consider the-dimensional cubic fraction of a random ﬂzhgrep is the average of«|p|B). Here we assume that the
alloy whose size isL. This fraction is described by the P” in Eq. (8) is same as that which appears in the Kubo
Schralinger equation: formula. Th[s implies that' the value of the matrix elements is
well-approximated by a single average value. In other words,
p? the matrix element is statistically well-distributed. From the

om V), (20 Kubo conductivity and the above formula, we obtain

H

. we’h .
A(D) =Ethal1). 3 o=@—<2ﬁ KelpulB)PA(E~E,) SE~Ep)

To measure the tendency of the localization for a given
eigenstate, we introduce the change of the boundary condi-

e’h —2<dN)2
tion:

- 2m2L6|p dE

_ ; e’h [dN
Yalr +Le) = expli §) Yro(1). @ :T,__Z(E)< AE.) ©
Here we only consider the direction. The generalization to
all directions is easy. This boundary condition is equivalenthere the bracket in the first line is an appropriate average
to solving the following Hamiltonian: over energy levels Since the conductivityGy for a
d-dimensional system may obey the scaling law,

2 — o d-2
H,:% ﬁ+fLT¢9x V) Gy=0L% 2, then
Gy 1 1/|5%E,
~ hdo . ﬁ2¢2 gd:(e2/h)~K<AEa>:K< WZ_ >a (10
—H+mLpX+ omi2 (5) $=0
whereA=1/(dN/dE) is the mean level spacing. Note that to
For localized state, this change of the boundary conditioet “~" become “=,” we have to know the prefactor on

does not affect the eigenwave function because the exponethe right-hand sidérhs) of Eq. (10).

tially damped tail of it near the boundary of the alloy cannot We would like to make three pointé) The derivation of
transfer this perturbation to the other side. This would correthe Thouless formula is based on the time-independent
spond to no conduction of electrons. However, for the ex-Schralinger equation. On the other hand, for the Kubo for-
tended eigenstate, this perturbation by the boundary condimula, it is based on the time-dependent Sdiger equation

tion does affect its wave function. The perturbation can beand the adiabatic process is assud@@1,d. (ii) The Thou-
transformed to the other side without large loss. Thus, thdéess conductance is the average conductance. Then, the
extended state contributes to the conduction of electrons houless conductance may be proportional to the usual Kubo
This effect would appear in the change of the correspondingonductivity, only if all assumptions above, which assure the
eigenenergy. Let us introduce the following quantity: averaging, are satisfiedii) For classically chaotic systems,
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TABLE I. The situation for the derivation of the Thouless formula and the Kubo formula.

Thouless formula — Time-independent Hamiltonian
Equilibrium property
Kubo formula — Time-dependent Hamiltoniatadiabatic proce$s

Nonequilibrium property

the average over energy levels should(pe -|) in the me-  where() denotes the ensemble average with respect to the
tallic regime rather thad|- - -|?)¥2 in the other definition initial pointsx in certain initial cellX,= ¢(x), and ¢, is the
[21]. (See Table ). It is shown, by random matrix theory, time-evolution operator. Here the caret represents the posi-
that the tail of the curvature distribution obeys the power lawtion in the whole space. We denote the positions in the initial
[22]: cell by x,y, ... without the caret. The diffusion coefficient

D is written as

d 2
= 1 K 1 .
P(i)~| x|~ (B+2) B=2, GUE(CUB) (11) i= g=0
p=4, GSE(CSB, To express the diffusion coefficient in terms of the dynami-

cal characteristic quantities, here we define the weighted

wherexk=’E(\)/dN? [ k= ?w(N\)/IN?] is the level curva- Perron-Frobenius operator:

ture, and\ is the system parameter. These expressions are L9, x)=eB 05 §— ¢, (X)]. (14)

for the type of HamiltonianH= H0+)\V Hwn E.(N) ¢,
[H Hy + )\VE 8t — j), U=e (/MHog=(in) AV The associated Fredholm determinant for this operator is

Uy, =e'n®y]. If we take(] - - -|?)Y2, the mean value of it Z(B,s)=de(1—zL), (15)
will become divergent. Therefore, we should take the abso-
lute value of the curvature in the bracket. where z=¢€°. By using the usual techniquesee[23]) and

reducing the symmetry, we rewrii&(g,s) in terms of the

information of periodic orbits. Now the periodic orbits are

described in the fundamental cell with the winding numbers
In the preceding section, we have introduced the Thouleswhich determine how many cells they pass through. The re-

formula in connection with the parameter dependence of ersulting expression is

ergy levels to the Bloch parameter. In this section, using the - 4

semiclassical theory, we show that the level curvature is a 28.s)=11 ex;{ Z -

Ill. SEMICLASSICAL LEVEL CURVATURES

e(ﬁ- Wp— srp)r

—_— 1
dermy -1y 49

guantum analog of classical diffusion coefficient. Then, it

turns that the Thouless formula uses this analogy for mea-
suring the transport property. To show this analogy, first wewvherep represents the prime periodic orbitg, is the wind-
shall look at the result for the classical diffusion coefficienting vector ofp (see Fig. ], 7, is the period ofp, r is the
in hard chaotic systems with periodic lattice symmetry. Nextrepetition of p, and M, is the monodromy matrix fop.
we start the derivation of the semiclassical expression for the

Thouless formula for both the autonomous Hamiltonian sys-

tem and the kicked Hamiltonian system. . . .

A. Classical transport phenomena

Recently, in the framework of classical mechanics, the
connection between transport coefficient and dynamical
chaos was discovered in the escape rate formdlik2l3,
the cycle expansiofl4,15, and the Gaussian thermostat
model[16]. In particular, the cycle expansion will be used
for the semiclassical evaluation of level curvature in the next
subsection. It is based on the information of periodic orbits
of the system with discrete geometrical symmejpgriodic
lattice symmetry. Here we briefly show the derivation for
later use. Readers should to consult REf€,15.

To evaluate the diffusion coefficient, here we define the
generating functioQ(B) formally:

®
o 0
00
o0 0
0

330K

1 .
Q(B)=Ilim _|n<eﬁ-<><r><>>, (12 FIG. 1. The lattice symmetry and the winding vector for a bal-
t—o0 listic periodic orbit(two-dimensional Sinai billiard
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Z(B,s) can be further reduced to the infinite product of thewhere A =II\, o, the product of the expanding eigenval-
associated Ruelle zeta functions. To see the leading zero gfs. Here we must note that the generating fund@¢p) is
Z(B,s) which corresponds to the equilibrium state, we onlya solution ofZ(8;Q(B))=0 [or 1/Z(B,Q(B))=0]. This is

need the corresponding Ruelle zeta function among them: easily confirmed by the large deviation properyb,24,25.
Finally we expand the Euler product and differentiate it with

1 eﬁ-wp—srp i Th
I 1= (17)  respect t95; two times. Then we get
dQ 2
2 2 W 4 pyt i~ T2 Tyt Pyt +py | Ipytpyt - -+p
9 " 17 P2 kel 98 P1TP2 k 11 P2 k
&—ﬁzQ(ﬁF . (18)
i

Zk ’Tpl+p2+...+pktpl+p2+...+pk

Here the sum ovek is taken over all combinations of the Bloch parameter ¢. If the fundamental cell is the

prime periodic orbits. If the system possesses the symmetry-dimensional hypercubic, the corresponding Hamiltonian is
so that given as

J & 2
—=Qp)| =o, 19 (f,+_¢

dPB;i _ NI
p=0 H(p.q)=

S V@), 2y

then the diffusion coefficient is given as
whereL is the size of the fundamental cell. This periodic
1 condition for the potential is interpreted in the condition for
D_ﬁ the wave function:y¥(q+Na)=(q). For simplicity, we
consider the simplest case, i.e., periodic cubic lattices in
three-dimensional space. With this condition for the three-
2 (— )M (wp Fwp e W) A Ap - A dimensional case, the system has the symmetry group
X K ) Cn®Cy®Cy . N3 irreducible representations of this symme-
K try are labeled by the reciprocal lattice vectaren the first
Ek: (=D (rp,+mp, e ) [Ap A, Ap| B)r/illouin zone. Egch charai):ter is given ggw) =e'k'". The
Gutzwiller trace formula for the system with discrete sym-
metry was investigated if26,27 and[28] for the zeta func-
tion form. The symmetry projected Gutzwiller trace formula
B. Level curvature in terms of periodic orbits: is given as
Autonomous Hamiltonian systems

(20

Let us start the derivation of the semiclassical expression _
for the Thouless formula. First, we have to rewrite the usual 9(E) n%g 9m(E), 22
Gutzwiller trace formula into that for the periodic lattice sys-
tem with the Bloch parameter. Next, we shall use the asso- S
ciated Gutzwiller-Voros zeta function(the associated w exr{ir (_F’_ M”
Selberg-type zeta functinin that time, the formalism for — se ) %2 lE () ho 2
the classical diffusion coefficient in the preceding subsection =™ in 5 Kyl =1 Xm{Jp |de(M;,—|)|1/2 ’
will be helpful for us. (23

1. Gutzwiller trace formula for the system
with the periodic boundary condition
(autonomous system)

wherem is the index for the irreducible representatidy, is
the dimension of thenth irreducible representatiofi | is
the order of the subgroui,, of the groupG, andxm(g,) is

Let us consider the-dimensional systems with the peri- the character of the symmetry operatigpfor the mth rep-
odic potential:V(q+n;a)=V(q), whereg (i=1,2,...d) resentation. For the system considered here, the irreducible
is the primitive lattice vector along thih direction and representations are labeled by the ve&t@nd the symmetry
nieZ. In general, the associated quantum system has theperation is represented by the vectay for the primitive
Bloch parametergp=(¢,,d,,....,¢q), namely, y(q+a) periodic orbit p. Thus, the characte(g,) becomes
=e'%y(q). The eigenenergies for the system depend on the(w,). Equations(22) and(23) are rewritten as
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B 2 by the factor exp{i¢-wp), wherew, is the winding vector.
g(E)—kEg 9«(E), (24 Therefore, the Gutzwiller trace formula for the system with

the Bloch boundary condition is given as
. Sp MpT
ex;{w(z— T+k-wp”

i S [detMp— D[ d
G (E )=k S P
(25) K %4 K
Next we consider how the Bloch parameter modifies the S, u
above-trace formula. If we define the translation operator ® ex;{ir[%—LjL(k d)- pr
U(¢) asU(¢p)=e'*%", then we getU™($)H(p,q)U () x>, —
=H(p+#A¢/L,q). The propagator =1 |detM—1)]
K(x,y;t)E(X|e_iH”ﬁ|y> (26) (28)

is modified as 2. Semiclassical evaluation of level curvature

K(xy;t;p)=e ' & VK(x,y;t). (27)

Rewriting the Gutzwiller trace formula into the zeta func-

Then concerning the Guztwiller trace formula, the contribu-tion form [29,30}, the corresponding Selberg-type zeta func-
tion of each periodic orbit to the density of states is weightedion for the irreducible representatidnis given as

My
® expl’ %—MLJr(k &) Wp“
Z(Eip)=Cexpl~imNo(E)] 11 111~ = : (29
1, f-17 K)i
kﬂl |)\(pk)|l/2)\i))lk
|
where my=d,/|K,| is the multiplicity of the prime IZW(E; )
periodic orbits, C is an appropriate constant, and Colp)=—— : (32
A (k=1,...f-1) is the expanding eigenvalue of the E=En(4)
monodromy matrix. The relation to the density of states is 5
achieved by c _17%4(Ed 33
l(¢) 2| 07E2 ( )
E=E ()
1 1 1 _Z(E;¢)
dy(E; )= — ;TJE E-E.d) =— ;jzk(E'(j;) . Differentiating the zeta function with respect # and set-
n n K= (30 ting E=E(¢), we obtain
. . _ _ IEn(¢) 1 0Z(E;¢)
From here on, by using this zeta function, we obtain the — == _ (34)
: - . 2z Co() I _

Thouless formula in terms of periodic orbits. The argument E=En(¢)

developed here is completely parallel to the classical cas
[14,15 in the preceding section.
First we assume that the zeta function is expanded neal

fi a similar way, once more differentiating the zeta function
and using Eq(34),

the eigenvaluee, (), namely there is no degenerathis 9%E (o) 1 [82Z(E; o)
condition is relevant to classically chaotic quantum system = 5
as[31] IPi Co( ) I E=E.(¢)
2 dco(¢) IZW(E; )

Zi(E; ) =[E—En( ) H{co( ) +C1(H)[E—En( )]+ -}, ol d) 0 b ey

(31 "

2¢c1( ) [ IZ((E; ) 2

where Co(¢)z< 90, E_En(¢)> . (39
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To evaluate the individual terms on the rhs of E8p), we PZ(E;dp) &
1- E tp: 1Pyt

use the cycle expansion technique. In order to avoid the com- —a¢-2_ 7 !

plicated formula which comes from{¥, we consider a two-

dimensional system. As if23], we rewrite the zeta function A A

- . =D (W W A+ +W )t ,
in the Euler product as follows: 7 Py Vp, prtpyt - tpy

(40)

Here we assume thaty(E) is independent of; . This holds
for the leading order approximation . cq(¢) andc,( )
=Cexq — i WNO(E)]( 1— 2 't"p,+pé '“+F’(<) are evaluated as follows. The derlvatlvetg,')ifwnh respect to

E now becomes

zk<E;¢>=Cexr{—ino<E)]lljo Tp[ (1—t,)™

(36) J ~ T I (98 (1/2)
where SEW T % aE aE(|A y A, ) (42)
Sy mpT We assume that the second term is negligible. This holds for
exp i 2= ———+(k=¢)-w, the case in which the corresponding periodic orbit is away
Tp,ztpl A |1’2A' (37) from the bifuncation points. Thus,
p p
9Z(E; )
and Co(E; ¢)_—
Tpi+pé+...+p&:(—1)k ft“piTpé---Tpé. (39

:exp:—ino(E)][ —imdo(E)
Herep' is the pair of f,l). The system considered here is

bounded by symmetry. Then the repetition of prime periodic
orbits will be needed for the semiclassical calculation of ei-
genvalues, differing from the classical case. The derivative
of the zeta function with respect i, is given as

9Z(E; ¢)

xX|1-2 T,
> Bprmgeon

1 .
i (To tTo 4 T lorp i £

79 = Cex —imNo(E) ]| 1~ E Tt pye. ] “2)

where we used the relation

=iCexf —imNg(E)]>

X IS,

—=T,. (43
i i JE P
X(Wp1+Wp2+ w )tp TPyl (39
Now we can interpret the individual terms on the rhs of Eq.
and (35). First,

i i i T
+ + ...+
E (Wpl sz ka)tpi+pé+...+pé

=4 (44)
> (To, + T, b+ Tp )l pps iy

k
k E=E (¢

En(p) 1 IZ(E;¢)
d ;i Co( ) dbi E=E.(¢)

can be interpreted as tlaift term, which is the group velocity. If the system possesses some symmetry, this term may vanish.
We assume that the system has such symmetry. N@& jf ¢ =0 (this holds for¢p=0 usually, Eq. (35 becomes

i i
Ek (Wp, +Wp +- - w K Lepyt ot

=—i# , (45)
E=En(¢) D (Tp T+ T oty
E=Eq(9)

PENP) 1 PZ(E )
ap?  col) ¢l
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TABLE Il. Comparison between the classical and semiclassical results for the autonomous Hamiltonian
systems: The Gutzwiller-Voros zeta function is for two-dimensional systems.

Classical result Semiclassical result
Weighted Frobenius-Perron kernel Feynman kernel for the system
LY(5.%)=eB 95§ — (%)) K(x,y;t) = e 1% 60 x|~ THUA|y)
=g 19 NIy A lSo/i-imuld
Fredholm determinant Spectral determinant
det(1—z£)=0 detE—H)=0
Associated Ruelle zeta function Gutzwiller-Voros zeta function
1
——=——=exp(— mNo(ENDIT T ,(1—t
{(,BS 1;[ (- tp) L(E; d) p(— No(E)IT, p( p,l)
eﬁ Wp—S7p
_ M
b= TR e 27w, |
X |Ap| 71/2A;|
Generating function Eigenenergy
1 . EX
QU= (e 6:) ()
Condition:1£(8,Q(8))=0 Condition:1£,(EX , #)=0
Diffusion coefficient Level curvaturénverse of effective mags
d
1o & PEX 1
D=2~ Q) =]
Zdj:1 (7,8j2 B=0 ’?(152 m,
where we used in Eq42) Vi nm
dgnl= 2 (m (53)

—_ m
1—2 tpi+pé+"'+pﬁ:0' (46) . .
k where V; ,,=(n|V;|m). Equations(50) and (51) give the
exact level curvatures. Here we subtract the term

that is, the condition thaE,(¢) is a zero of the zeta func- #2¢$2/2mL2 from the original eigenvalue:

tion. Here it turns out that Eq45) is the semiclassical ana-
log of the classical diffusion coefficient. 12| |2

In order to compare it with the exact quantum result, we En=En|org—W.
can use the result of level dynamics for the autonomous
Hamiltonian systeni32,33,22,34 The Hamiltonian is now

(54)

Finally, we summarize the relation between the classical case

hp-p  h2e? in Sec. lllA and the semiclassical case in this section in
H(#)=Ho+ —— T T ami2: (47)  Table II.
Here we put C. Semiclassical level curvature for kicked systems
. #p _ In this sectio_n, we de_rive the semiclassical level curvature
V= o7 (48) in terms of periodic orbits for the kicked systems.

] ) . 1. The exact quantum result: Level dynamics
Then after some calculation, we obtain the following set of

equationg32,33,22,3% Ha'll:nr}ﬁor?ir;i—:dimensional kicked system has the following
En(#)=Vi n=(n[Viln), (49 o
2 H=1()+9(@ X alt-n). (55)
THEn(d) =22 E'”’g (50) i

The periodic boundary condition can be applied to both the
p axis andq axis. If it is applied to both axes, setting period
g ‘94) =2 2 g}{ (51 1, then, due to the compactness of the phase space, the un-
' m#n Em certainty principle is given by

dgIN)= 2 m e Vimn (52) =N, (56)
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where N is the number of lattice points. Throughout the 1
present paper, we consider the case that the phase space is 7 n

torus. The time evolution operattr is given as

0=ex;(—;';f<@>)exp(—,'i—g(a>). (57)

Here according to the periodic boundary conditioh&p)
andg(q) should be

f(p+1)="1(p),

9(q+1)=9(q).

In a similar way to the Bloch boundary condition in solid
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P
W[g(q%ﬁ)]

n>, (68)
2(.0

& n =££RE <n
o

2. Semiclassical evaluation of level curvatures
for kicked systems

a .
g[f(p+ﬁa)]m>

J .
%[Q(Qﬂ%ﬁ)]

1
" 1= expli(on— o)’
(69)

To evaluate the curvature of the eigenangle semiclassi-

states physics, we can introduce the following transformacally, we use the zeta function formalism again. As men-

tion:
q—a+#p, (58

P—p+ia. (59)

This transformation corresponds to the boundary condition

for the wave functions,
P(q+1)=explia)y(q), (60)
Y(p—1)=expiB)¢(p). (61)

For simplicity, we introduce the se=(a,() of the vari-
ablesa and B. Then the time evolution operattf(6) be-
comes

0(0)=exp( — ;L—f(fwﬁa))exp( - ;,L—g(mﬁﬁ)).
(62)
It is related toU by the operatoR=exy] —igplexdiad] as
U(6)=R'UR. (63)

The eigenvalue problem for our case is

U(@)|n)y=e'“n9|n). (64)

After the some calculation, the derivatives of,(6) are
given as

on Ll L e prn 65

a ~ n\n=olf(ptha)]ing, (65

Ton 20 ra@+h 66

B R nﬁ[g(q B)n), (66)

2
cof(wp— op)/2]

Pw 1
—z”=p2 <n

NN
a[f(q—i—ha)] m

1/ | .
— 7 no=lf@+ha)]n), (€7

Po, 1 2
=— n cof (wp— wm)/2]

J "
@[g(q+ﬁﬁ)]m>

tioned before, we consider the torus case. For this case, the
formalism is greatly simplified. First, we must derive the
Selberg-type zeta function for the quantum kicked system
[35]. Since eigenangles are periodic with periog, 2hen the
density of states for eigenangles is given as

N + o

d(w;o)zz,l Z}w N ow—wy(0)—2ml]. (70)

This density of states should be connected with the following
spectral determinant:

P(z 0)=dei(z—U(6))=0, (72)

wherez=¢'“ . The relation is achieved by

1 d .
J—InP(e'(@tie)), (72)

1 do

d(w; 0)=

wheree>0. Because of the finiteness of the time-evolution
operatorU(6), Eq. (71) is expressed in the finite series:

N
P(z;0) = ZO anz", (73

where the coefficientay for k=1,... N satisfy the Newton
relation[35],

k
n; an_in THUN(0)). (74)

| =

aN-k=
To investigate the spectral property, it is convenient to con-
sider the following zeta function:
Z(w;0):efi(®+Nw)/2P(eiw), (75)

where

e'® = expi —de(-U(0), (76

PRI

andw; are the eigenangles. We can obtain this formula along
the analog of the derivation of the Riemann-Siegel look-alike
formula[30]. We note here that for real, this zeta function
Z(w) crosses on the real axis aagdis related toay_ i (self-
inversive property.
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a=ay_,e'"°. (77

The semiclassical analysis enables us to show that the trace

of integer power ol is given aq36]

Sp+iwp,p,8

R n [

TreU"(9)=i" — exr{—

(Lo p,nznpr Vldetmy—n)| 1%

. Ty
—IWp’qa—T s (78)
where the actiorSp is
n—1
Sp= 2, {=[F(P)+9(a)]1+ i (0110

—wigi+wl Vpi} 79)

and the total winding numbens, andw, for the g and p
coordinates are given as

Wp=2 wi,

n—-1
We= 2> wy', (80)
=0

respectively. Sincé® —0 as#—0, then the semiclassical

zeta function is given as follows85]:

IN/2]—ep

Z(w;0= >

[Am_|ei(l_N/Z)w+AN_|e_i(|_N/Z)w]

1
+oen(Angt Al (81)
wheregy=1 for evenN, 0 for oddN, and

k
A=— n; An_iin TIUM(0)). (82

x| =

3599

where
7,,(E)=me*h T{0,8(E—H)D,8E—H)], (85

and f(E) is an appropriate averaging function such as the
Fermi-Dirac or Bose-Einstein distribution ail is the vol-

ume of the system. The Thouless formula represents the av-
erage conductance. Then, we need the averaging process for
the Kubo formula. Using the appropriate averaging, Akker-
mans[37] found the relation between the Kubo conductivity
and Thouless conductance within the framework of the ran-
dom matrix theory. First remember the process of the deri-
vation of both formulas. We know that if we start from the
time-independent Hamiltonia(see the Appendjx the con-
ductivity o is proportional to the level curvaturge., equi-
librium property. On the other hand, starting from the time-
dependent approachithe adiabatic switching of the
perturbation, the Kubo formula is obtained from the use of
the von Neumann-Liouville equatiofi.e., nonequilibrium
property. The situation for the derivation of both formulas is
summarized in Table |. The question here is as follows: Is
the Thouless formula the same as the Kubo formula, or what
is the common part in both formulas? Furthermore, we also
question whether the underlying classical chaos positively
plays an essential role for the relation between both Kubo
and Thouless formulas or not. To answer these questions, the
relation derived by Akkermanf37] is interesting, and is

given as
[alj-o(3L) o
—| )=7@A( — ,
Jep Ib?|

where the overbar represents the average @veA is the
mean level spacing, the brackets represent the energy level
average, anca=1/(w6). The |hs and rhs represent the
Kubo formula(the current-current autocorrelation functjon
and the Thouless formula, respectively. However, the Kubo
formula on the |hs is different from the usual Kubo formula.
Here the current-current correlation function is time-
averaged over the linearly time-dependent flgix On the
other hand, the Kubo formula is evaluated at ¢he 0 (see

In a similar way as in Sec. Ill B 2, we obtain the semiclas-the derivation of the Kubo formulg20,38). The assumption
sical expression for the curvature of the eigenangle given a4sed here is essentially that the Hamiltonian belongs to GOE

Pwy, PZ w;0)

da’ - da’

(&Zsc(w;O)
w=0(a) Jw

-1
wwn(a))

(83

Here we note that both denominator and divisor of B9

include the analytical bootstrap effect, although we do not

write them explicitly.

IV. COMPARISON WITH KUBO FORMULA

for =0 and GUE for¢+#0.

Equation(86) suggests that there is some relation between
the classical results. First, from another ro(gee[11]), us-
ing the diagonal approximation and assuming the Gaussian
distribution of winding numbers, the rhs of E@6) can be

shown to be
ﬂE)Z B W* 2
(w (ﬁ) ’ (87

wherew* =27 dyé&/ Ty , Ty is the shortest period of peri-

In order to unify the theoretical understanding of theodic orbits, andtT/ T, is the variance of the winding number
quantum transport process, the Thouless formula should fer the periodic orbits around periodr. If we put
compared with the other formula on the conductivity, espeT* =2=#d,, the rhs of Eq(87) is the variance of the wind-

cially the Kubo formula:

eJs df
O'MV:an de<_E)O-MV(E)' (84

ing number with periodT*. On the other hand, from the
expression of the level curvature Eg5), the rhs of Eq(86)

can be considered as the fourth cumulant of winding num-
bers. Therefore, Eq86) implies that the flatness factor of
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the winding numbers is constant. This may be related to th&or simplicity, we choosé asA=27x/N, whereN is a posi-
distribution of the winding number@.g., Gaussian distribu- tive integer. Using the Fourier bases, the matrix elements of
tion), although we do not show this explicitly within our the time evolution operator E¢91) are given as

theory because of the complicated formula for the level ve-
locity and c’urvature. However, it is clear_that the vali_dity of U o i (m212) E o (M=1)6 g iycots;) ©2
Akkermans'’s relation depends on the validity of the diagonal nm— N < ,
approximation[11] for the energy average in both sides of

Eq. (86), that is, how the decoherence in the off-diagonalwhere

terms is realized. The decoherence is assured for the quan-

tized chaotic systems, since the actions of the periodic orbits 2T KN 27+ a

around a certain value of action are distributed randd(fily h NG Vo TN (93
instancg 39], for a dispersing billiard systemNote that Ak-

kermans’s relation is also valid for diffusive mesoscopic sysNow we evaluate the level curvature for the quantized kicked
tems[37]. In short, it seems that the Gaussian distribution ofrotator system. However, the kicked rotator system is a non-
the winding number and the decoherence is responsible fdiyperbolic system. The enumeration of the periodic orbit in-
the validity of Akkermans’s relation. Conversely, in generalcluding the complex one is very hard. Then, as the first step,
cases, the underlying classical dynamics affects the validitye consider the cagé=2, namely an extremely deep quan-

P4

of Eq. (86). This will be shown in the next section. tum regime. The secular determinant for this case is given as
V. NUMERICAL TEST P(w;a)=det(z—U(a))
In Sec. lll, we have derived the semiclassical expression e?— Tr(U(a))e'“+de(U(a))

for the level curvature formally. Naturally, the following
guestions arisefi) How can the expression obtained here
work? Do we need the higher order correctiofis? Where ®
do we find the Iocallzatlongproperty’> In order to answer thesé{vherez €. We know that the determinant dgt(a)) is
guestions, we have to test the expression obtained on given as
appropriate model. We choose the quantized kicked rotator
system as a model system. The next aim of this section is to

check Akkermans'’s relation.

:(elw_eler(a )(elw_elw,(a)), (94)

detU(a))=—i (95

and the eigenangles are explicitly given as

= Iog(%{(l—ni)i\/Zin2+4i y2}>, (96)

K o K o
;cos{ 5) , Y= cos{ ;cos{ 5) } . (97

Prs1=Pn+ Ksin(q,). (88) The trace oifJ(a) can be expressed as

A. The test of semiclassical curvature

We use the kicked rotator system for the test of semiclas-
sical curvature. The kicked rotator system is a well known
and well investigated mod&40—43. The classical dynamics Where
is defined as a simple two-dimensional map:

On+1=0nt Pn+1, mod 2, n=sin

Here the phase space is a cylinder. However, we can also_ -~ B \Fé —izcog )
impose the periodic boundary condition to the momentum Tr(U(a))= 54 € !

axis. For this case, the phase spacg3slt is known by the

numerical experiment and the rough estimafi48] that the 2 i
diffusion coefficient in the momentum space behaves like =V7 ~]o(Z)+2mE:1 Jom(z)e” M cogma) |.
D~ a for largeK. (89

The semiclassical evaluation of the trace UYy(can be
found in[44]. We omit the details here. However, we only

note that each Bessel function corresponds to a contribution
of one(real or complex periodic orbit. Then, the number of

The corresponding quantum system is defined by the follow-=
ing Hamiltonian:

~o B all periodic orbits is infinite. Furthermore, since each contri-
H= p_+ Kcogg+ha) 2, S(t—n), (90)  bution from a real periodic orbit is the oscillating one with
2 n=—c respect toa, the number of real periodic orbits controls the

nodal pattern of the parametric motion of eigenangles. In
where a is the Bloch parameter{m<a<m). The time  other words, the topological richness of the underlying clas-
evolution operator is defined as sical dynamics determines the complexity of the band struc-
R R i ture. (See Fig. 2 foK=1,15,25) The exact and semiclassi-
U= (/0 (p*12)g= (i) Keos@+ha), (91)  cal band structure fok =10.0 are depicted in Fig. 3. In this
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FIG. 2. Band structure foK=1,15,25.

calculation, we did not need a uniform approximation for

real periodic orbits but we did need one for some comple>i
periodic orbits and used the result of the asymptotic approxi-

mation of the Bessel functiof#5,46. The agreement is ex-

cellent for the case of including the complex orbits. In Table

11, the value of the level curvature for each order of approxi-
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o
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FIG. 3. Band structure: exact and semiclassi@m the lead-
ing to third orders K=10.0.
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TABLE lll. Level curvature forN=2: exact and semiclassical
results (from the leading to fifth ordejsfor K=10.0: Two ei-
genangles are symmetric to each other. Then we list one value only.

Order of Approximation Curvature

Exact 3.2991718206349899.0 2
Leading 1.6290961810539483.(°
Second 2.81623518510935870 *
Third 1.096521723633349610 2
Fourth 3.5433553408994085.0 2
Fifth 3.429897825250278310 2

mationis listed. It was shown that the complex orbits play an
important role for the semiclassical evaluation of the level
curvature.

B. The test of Akkermans'’s relation

First we confirm the validity of the proportional relation
between the Kubo and Thouless formula derived by Akker-
mang[37]. We choose the quantized kicked rotator system as
a model system and consider the transport phenomena in the
momentum space. In Fig. 4, the typical behavior of the level
dynamics for the kicked rotator system with respect to the
Bloch parameter is depicted. Comparing Fi¢a)4with 4(b),
the motion of the energies ofld) is much more complicated.
This behavior may correspond to the topological richness
i.e., the topological entropyof the classical dynamics. For
Tr(U), this is easily confirmed as mentioned in Sec. lll. In
Fig. 5, we depict théd-dependence of the rati for several
values ofK, where

Jdwp, 2
(5
A= P2 |12 (99
A< da’ a0>

and#z =2m/N. As we can see from Fig. 5, for large values of
K in which the corresponding classical dynamics exhibits
global chaos, Akkermans’s relation is observed in the semi-
classical regimglarge #=27/N). On the other hand, for
small values ofK, Akkermans's relation breaks down. lIts
qualitative behavior can be summarized as

(i) A~ constant for larg&, N ,

(i) A~N~ YK for smallK. (100

It seems that the transition of this behavior actually corre-
sponds to the breakup of the last KAM tori. The breakup of
the KAM torus occurs aK~0.97. Regime(i) can be re-
garded as the metallic regime. In this regime, the classical
dynamics exhibits globally chaotic motion. On the other
hand, regiméii) corresponds to the localization regime. This
regime is a classically integrable regime. The localization is
due to the fact that the eigenwave function has the support of
the tori in classical dynamics. The intermediate regime cor-
responds to the transition to the global diffusion. Akker-
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FIG. 5. Check of Akkermans's relation: The vertical axis
- represents the ratioA. The horizontal axis represent§N
11 =2m7/h in the log scale. We plot the data for
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 K=0.8,1.0,2.0,5.0,10.0.15.0, 20.0, 25.0.
2n
® Another definition of the Thouless conductance is
L1 &zwn 102
9 =x\|Za2| |- (102
a=0
We plot the following relation, which is similar to Akker-
mans’s relation
Jwy 2
Jda
Al=—r—m—— (103
0“wp
3|& < da a0>
10" T T
K=0.8 —
K=1.0 -
K=2.0 {J-
K=5.0 &
K=10.0 £-
K=15.0 &
K=20.0 O-
K=25.0 @
10° + b
0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 <
o
n
1070 1 g
FIG. 4. Level dynamics for the kicked rotator system: The ver-
tical and horizontal axes represent the eigenanrg®m and the
Bloch parametew/27. The parameters are chosen(asK=5.0,
N=2x/fi=64; (b) K=20.0,N=27/%=64.
10-20 1 1
mans'’s relation Eq(86) is valid for a globally chaotic K 1 10 N 100 1000
large) and semiclassicalfi( smal) regime. Akkermans used
the Thouless conductance FIG. 6. Check of Akkermans's relation: The vertical axis
represents the ratioA’. The horizontal axis representsl
1/ w,|? 172 =2w/h in the log scale. We plot the data for
9=+ == (101 K=0.8,1.0,2.0,5.0,10.0,15.0,20.0,25.0. The behavior is similar to
A\ da” | _, Fig. 5.
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in Fig. 6. There is no drastic change compared with Fig. 5(9,'):|G' 9. g org’ vsK: the solid line(dashed ling s for g

A andA’ tend to be constant. However, since the fluctuation
is very large, we cannot determine the universal constant , 9 . .
from the numerical data. Figure 7 shows tRedependence g (org’)~K*. In Fig. 10 and Fig. 1,1’ thel dependences of
of the velocity-velocity correlation function. For lardé we the Thoulless conductanap ar)d 9 ,fre dep|cted,. respec-
see the tendency of the slow decay with resped.tin Fig. t|vely. This shows thag andg’~7% . The numerical cal-'
8, we depict theK dependence of the velocity-velocity cor- culation here sugggsts that the Thoulg§s formula essentially
relation function. After the breakup of the classical tori, it measures the classical diffusion coefficient.
behaves like

VI. CONCLUSION

2
<(‘9wn) >~K2. (104) In this paper, we have derived the semiclassical expres-
da sion of the level velocity(the group velocity or crystal ve-
locity) and level curvaturéthe effective mass fogp=0) for
) systems with the periodic lattice symmetry. Using the semi-
In Fig. 9, theK dependence of the Thouless conductagce classical expression, the theoretical foundation of the Thou-
andg’ are depicted, respectively. Their behavior is similar tojess conductance was reconsidered. It turned out that the

the  velocity-velocity  correlation  function, i.e., Thouless conductance essentially measures the classical dif-
10° T T 101° . .
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K=5.0 -l
K=10.0 <x-
K00 O

c 10° | K=25.0 @ -

g 107 | g

5

5

[

S o 100 F .

>

E

¢

£ qom| 1

o

g

10° ]
10-30 1 1 10‘10 { |
01 1 10 100 1 10 100 1000

FIG. 8. Velocity-velocity correlation function is. FIG. 10.g vs N.
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1010 . . electron ga$52]. The effect of higher:-correction(to both
the mean and oscillation payter level curvatures is now in
preparatior[53]. (i) The topological richness of the under-
lying classical dynamics complicates the band structure, that
is, the oscillation of the parametric motion of the givieh
energy is determined by the number of the periodic orbits. If
the one-body description of the system is supported and spin-
orbit interaction is negligible, this suggests the possibility of
finding the signature of the underlying classical dynamics
from the experimental datdiii) Using Akkerman’s relation,
we conjecture the sum rule on the winding number of peri-
odic orbits. From this observation, it is suggested that the
universal constant in the random matrix theory might be re-
. lated to the universal relation in the underlying classical cha-
otic dynamics. It is worth investigating the other universal
constant of the random matrix theory.

Finally, before closing this paper, | must mention an ex-
1070 . . cellent review on the subject of this paper from the random

1 10 N 100 1000 matrix theory[54]. | strongly recommend that readers con-

sult this review.
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formula can be regarded as a variant of the semiclassical sSUm ~qnsider the following Hamiltonian describing the system
rule [47,31. In Sec. IV, it was roughly speculated that this i the static electric field:

may be related to the distribution of the winding numbers of
periodic orbits, perhaps the Gaussian distributjd8,49.

The author hopes there will be a numerical check of this by
a simple system and much more rigorous derivation of it
from the Gutzwiller-Voros zeta function or Ruelle’s dynami-
cal zeta function. Beside the mean behavior of the conduc-

tance, the fluctuation of the conductance is also accessib|§y using the usual perturbation theory, we can show that the

from the met'hod here. It may provide us with the previous, | oo operatod(t)=eSv~J,+ 5] from the electron occu-
result found in[50].

From the numerical test and the theoretical aspect, Wé)%“?]g thlenth_ e:{gelggenergYFerml ;:nerg)/m the linear order
found several interesting point§) In the numerical test of of the electric field Is expressed as
the semiclassical level curvature, we found that the inclusion
of complex trajectories makes a drastic change. Furthermore,
our test was limited to the contribution of fixed points. The
interference of periodic orbits was not investigated here. Re- A2
cently the contribution of complex trajectories to wave <j>: _252 Kl I[m)| [ _CO{(EH_Em)t)]
packet dynamics was investigated and the fine structure of mzn En—En h '
the quantum interference was elucida{é&d]. Concerning (A2)
the transport property, the investigation for the interference
of periodic orbits will be needed. More generally, the inves- R
tigation of higher-ordefi-correction is required not only for where we assumed thdy=0 and there is no degeneracy
the oscillation part but also for the mean part in the densitywhich corresponds to our case. If the level degeneracy exists,
of states. Thehi-correction sometimes becomes important.the perturbation theory should be modified. This implies that
For instance, the next leading order term in the Weyl ternthe theory is modified by whether the underlying classical
affects the magnetization of two-dimensional noninteractingnechanics is chaotic or not. The bras and kets are the eigen-

H=H,+J-&. (A1)
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states for the Hamiltoniahl,. The second term will vanish
in the time average. Thus the currdd) becomes

(3=t
__ S|
IE 0

(A3)

Then the conductivityr is
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- —d(En)%ﬂ | (Ad)
£=0

where we multiply the density of states at thth eigenen-
ergyE,,. From this, we see that the Thouless formula repre-
sents the equilibrium property of the syst¢fb—57.
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